Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Indian Pediatr ; 2016 Sept; 53(9): 786-789
Article in English | IMSEAR | ID: sea-179212

ABSTRACT

Objective: The incidence of the 22q11.2 microdeletion among children who have at least two out of five major clinical criteria for 22q11.2 deletion syndrome. Design: Prospective study. Setting: University Children’s Hospital in Belgrade, Serbia between 2005 and 2014. Participants: 57 patients with clinical characteristics of 22q11.2 deletion syndrome. Methods: Standard G-banding cytogenetic analysis was performed in all children, and the 22q11.2 genomic region was examined using fluorescence in situ hybridization (FISH). For patients with no deletion detected by FISH, multiplex ligation-dependent probe amplification (MLPA) analysis was also done in order to detect cryptic deletions of this region and to analyze other genomic loci associated with phenotypes resembling the syndrome. A selected group of patients diagnosed to have 22q11.2 microdeletion by FISH underwent MLPA testing in order to characterize the size and position of deletion. Outcome Measure: The frequency of 22q11.2 microdeletion among children with at least two of the five major characteristics of 22q11.2 deletion syndrome (heart malformations, facial dysmorphism, T-cell immunodeficiency, palatal clefts and hypocalcemia/hypoparathyroidism) Results: Typical 22q11.2 microdeletion was detected in 42.1% of patients; heart malformation were identified in all of them, facial dysmorphism in 79.2%, immunological problems in 63.6%, hypocalcemia in 62.5% and cleft palate in 8.3%. Conclusions: A higher detection rate compared to one-feature criterion is obtained when at least two major features of 22q11.2 deletion syndrome are taking into consideration. The criteria applied in this study could be considered by centers in low-income countries.

2.
J Genet ; 2009 Apr; 88(1): 15-24
Article in English | IMSEAR | ID: sea-114477

ABSTRACT

SOX proteins constitute a large family of diverse, well-conserved transcription factors present in vertebrates and invertebrates,and also implicated in control of many developmental processes. Our objectives have been to identify Sox14 gene of goat (Capra hircus), cow (Bos taurus) and rat (Rattus norvegicus), and to perform comparative analyses and mapping of SOx14 orthologues from numerous vertebrate species. PCR based approach was used to identify Sox14 of goat, cow and rat, while nucleotide and amino acid sequence alignments and mapping were performed using information currently available in public database. Comparative sequence analysis revealed remarkable identity among Sox14 orthologues and helped us to identify highly conserved motifs that represent molecular signatures of SOX14 protein that might have structural or functional significance. Further, determined chromosomal locations of numerous predicted group B Sox genes and their neighbouring genes using currently available genome database. In conclusion, our study has not only supported the proposed model of group B Sox genes evolution in chicken and mammals, but has also revealed that additional evolutionary events split Sox B genes into different chromosomes in some mammals. Mapping data presented in this study could help in refining the understanding of the evolution of group B Sox genes in vertebrates.


Subject(s)
Amino Acid Sequence , Animals , Base Sequence , Cattle , Conserved Sequence , Evolution, Molecular , Goats , Models, Genetic , Molecular Sequence Data , Rats , SOXB2 Transcription Factors/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL